Caio Guilherme Pereira

(Guilherme Pereira, C.; Pereira, C.G.)

Research Associate

Juenger Lab @ The University of Texas at Austin

Research Affiliate

Des Marais Lab @ Massachusetts Institute of Technology

I'm a plant biologist with strong interests in the fields of ecology and evolution. My main objective is to understand the functioning of plants, especially those that occur in severely nutrient-impoverished environments. I'm aiming to discover the consequences of their functioning for vegetation patterns, composition and diversity. My research is mostly experimental, but I also use observational and modelling approaches to achieve my goals. Since my move to the Des Marais Lab at the Massachusetts Institute of Technology, and then to the Juenger Lab at the University of Texas at Austin, my primary research goal has been to understand the molecular mechanisms of plant-environment interaction.

Recent News

New paper in Annual Review of Plant Biology

In our recent paper, published in Annual Review of Plant Biology, we review the physiological responses of C4 perennial bioenergy grasses to climate change. We discuss the ecophysiology and natural history of these plants, as well as their functional and physiological strategies, how these may affect bioenergy production, and how to improve these crops for a changing world.

Mar 4, 2024

New paper in Global Change Biology

In our recent paper, published in Global Change Biology, we investigated the dependency of photosynthetic traits on climate and soil properties using a new Australia-wide trait dataset spanning 528 species from 67 sites. We show that, although climate typically explained more trait variation than soil did, together they explained up to 52% of variation in the Nareagsw and Vcmax 25gsw slope relationships, with soil properties explaining up to 30% of the variation in individual traits. In particular, the influence of soil P likely reflects the Australia's geologically ancient low-relief landscapes with highly leached soils. We posit that least-cost theory provides a valuable framework for understanding trade-offs between resource costs and use in plants, including limiting soil nutrients.

Nov 16, 2022

Research fellow at the University of Texas at Austin!

I am excited to share that I have accepted a position at Tom Juenger's group (UT Austin), where I will be studying the genetics of nutrient uptake, allocation, use, and accumulation in 'switchgrass' and other Panicum species. 

Jan 18, 2022

New paper in Physiologia Plantarum

In our recent paper, published in Physiologia Plantarum, we suggest that phosphorus (P) toxicity, not deficiency, is what explains the calcifuge nature of most Proteaceae. We showed that differences in physiological responses of soil-indifferent and calcifuge species to high P and calcium (Ca) supply were associated with these species’ ability to regulate nutrient uptake, particularly that of P and zinc (Zn), as well as with differences in nutrient-allocation patterns at the cellular level. This study provides a unique evaluation of the interactions of P, Ca, and Zn in the physiology of Proteaceae and their role in the distribution of these species.

March 4, 2021

New paper in International Journal of Plant Sciences

Our recent review paper, entitled "The Genetic Basis of Plant Functional Traits and the Evolution of Plant-Environment Interactions", has just been published in a special issue of the International Journal of Plant Sciences dedicated to the evolution of functional traits in plants.

Feb 4, 2020

New paper in Journal of Experimental Botany

In our recent study, published in Journal of Experimental Botany, we showed that increasing calcium (Ca) supply enhanced the preferential allocation of phosphorus (P) to palisade mesophyll cells under high P availability, without a significant change in whole leaf [P]. Calcifuges showed a greater palisade mesophyll [P] compared with soil-indifferent species, corresponding with their greater P sensitivity. This study advances our mechanistic understanding of Ca-enhanced P toxicity, demonstrating its role in the calcifuge distribution of Proteaceae.

Apr 23, 2019

Visiting research fellow at Harvard University!

I am happy to share that I have been offered an appointment as a visiting research fellow of the Arnold Arboretum of Harvard University.

Mar 3, 2019

New paper in Journal of Ecology

In our study, published in Journal of Ecology, we showed that with declining soil phosphorus (P) availability across the Jurien Bay chronosequence in south-western Australia, the photosynthetic P-use efficiency (PPUE) of every studied species - from several families - increased. Plants growing on the oldest, nutrient‐impoverished soils exhibited similar CO2-exchange rates as plants growing on nutrient‐richer, younger soils, and extraordinarily high PPUE. This indicates convergence in leaf traits related to photosynthetic nutrient use on severely P‐impoverished sites.

Mar 3, 2019

New paper in New Phytologist

In our study, published in New Phytologist, we provided the first demonstration of calcium‐enhanced phosphorus toxicity across multiple Proteaceae species. We surmise that this phenomenon may partially explain the calcifuge habit of most Proteaceae and is therefore critical for the management of this iconic Australian family. This study represents a major advance towards an understanding of the physiological mechanisms of phosphorus toxicity and its role in the distribution of Proteaceae.

Oct 3, 2018

New paper in New Phytologist

In our recent study, published in New Phytologist, we have assessed the implications that phosphorus (P) availability and phylogenetic constraints might have for P compartmentation in eudicots. We showed that P allocation to different cell types may differ depending on the soil P availability in the habitat where species evolved, and that there is no phylogenetic pattern in P allocation within eudicots. We surmise that preferential allocation of P to mesophyll cells is a trait that evolved multiple times in response to P limitation, which is at variance with the prevailing model that eudicots exhibit a single P-allocation pattern.

Feb 17, 2018

Welcome to my webpage!

Here you will find general information about me and my research. Please do not hesitate to contact me in case of any question regarding my work.